高中物理:高考物理全册中20个常考实验汇总!

高中物理:高考物理全册中20个常考实验汇总!

时间: 2024-04-10 19:55:09 |   作者: 新闻中心

  再读游标读数:找出游标尺上的第几条刻度线与主尺上某一刻度线对齐 两次数值相加得出被测工件的尺寸

  先读主尺读数:读出主尺上与游标尺对齐的主尺刻度线的读数 再算游标长度:算出游标上与主尺对齐的游标刻度线前端的长度 两次数值相减得出被测工件的尺寸

  测量值=固定刻度值+固定刻度的中心水平线与可动刻度对齐的位置的读数×0.01mm

  (1)沿直线运动的物体在连续相等时间内不同时刻的速度分别为v1、v2、v3、v4、„,若v2-v1=v3-v2=v4-v3=„,则说明物体在相等时间内速度的增量相等,由此说明物体在做匀变速直线)沿直线运动的物体在连续相等时间内的位移分别为x1,x2,x3,x4„,若Δx=x2-x1=x3-x2=x4-x3=„,则说明物体在做匀变速直线运动,且

  电火花计时器(或电磁打点计时器),一端附有定滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片. 四、实验步骤

  (1)把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路.

  (2)把一条细绳拴在小车上,细绳跨过定滑轮,下边挂上合适的钩码,把纸带穿过打点计时器,并把它的一端固定在小车的后面.实验装置见图3所示,放手后,看小车能否在木板上平稳地加速滑行.

  (1)把小车停在靠近打点计时器处,先接通电源,后放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次. (2)从三条纸带中选择一条比较理想的,舍掉开头一些比较密集的点,从后边便于测量的点开始确定计数点,为了计算

  方便和减小误差,通常用连续打点五次的时间作为时间单位,即T=0.1 s.正确使用毫米刻度尺测量每相邻两计数点间的距离,并填入设计的表格中

  (3)利用某一段时间的平均速度等于最近一段时间中间时刻的瞬时速度求得各计数点的瞬时速度.

  (1)由实验数据得出v-t图象 ①根据表格中的v、t数据,在平面直角坐标系中仔细描点,如图:

  所示能够正常的看到,对于每次实验,描出的几个点都大致落在一条直线上. ②作一条直线,使同一次实验得到的各点尽量落到这条直线上,落不到直线上的点,应均匀分布在直线的两侧,这条直线就是本次实验的v-t图象,它是一条倾斜的直线)由实验得出的v-t图象进一步得出小车运动的速度随时间变化的规律,有两条途径做多元化的分析 ①分析图象的特点得出:小车运动的v-t图象是一条倾斜的直线所示,当时间增加相同的值Δt时,

  速度也会增加相同的值Δv,由此得出结论:小车的速度随时间均匀变化. ②通过函数关系进一步得出:既然小车的v-t图象是一条倾斜的直线,那么v随t变化的函数关系式为v=kt+b,显然v与t成“线性关系”,小车的速度随时间均匀变化.

  2.实验前要检查打点计时器打点的稳定性和清晰程度,必要时要调节振针的高度和更换复写纸.

  4.先接通电源,打点计时器工作后,再放开小车,当小车停止运动时及时断开电源.

  5.要区别打点计时器打出的计时点与人为选取的计数点,一般在纸带上每隔四个计时点取一个计数点,即时间间隔为T=0.02×5 s=0.1 s.

  6.小车另一端挂的钩码个数要适当,避免因速度过大而使纸带上打的点太少,或者速度太小,使纸带上的点过于密集.

  7.选择一条理想的纸带,是指纸带上的点迹清晰.适当舍弃开头密集部分,适当选取计数点,弄清楚相邻计数点间所选的时间间隔T.

  8.测x时不要分段测量,读数时要注意有效数字的要求,计算a时要注意用逐差法,以减小误差.

  高考实验题一般源于教材而不拘泥于教材,即所谓情境新 而知识旧.因此做实验题应注重迁移创造新兴事物的能力的培养,用 教材中实验的原理、方法和技巧处理新问题. 纸带的处理、游标卡尺的读数、匀变速直线运动规律以及 牛顿第二定律等,都是教材中的重点知识,只要熟练掌握, 就不难解答。

  2、用刻度尺测出弹簧在不同的钩码拉力下的伸长量x,建立坐标系,以纵坐标表示弹力大小F,以横坐标表示弹簧的伸长量x,在坐标系中描出实验所测得的各组(x,F)对应的点,用平滑的曲线连接起来,根据实验所得的图线,就可探知弹力大小与伸长量间的关系。

  3、在弹簧下端挂上一个钩码,待钩码静止后,记下弹簧下端所对应的刻度Ll;

  目的:实验研究合力与分力之间的关系,从而验证力的平行四边形定则。器材:方木板、白纸、图钉、橡皮条、弹簧秤(2个)、直尺和三角板、细线

  原理:该实验是要用互成角度的两个力和另一个力产生相同的效果,看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的合成的平行四边形定则。

  2、用两条细绳结在橡皮条的另一端,通过细绳用两个弹簧秤互成角度拉橡皮条,橡皮条伸长,使结点伸长到O点(如图);

  4、在纸上按比例作出两个力F1、F2的图示,用平行四边形定则求出合力F;

  5、只用一个测力计,通过细绳把橡皮条上的结点拉到同样的位置O点,记下测力计的读数和细绳的方向,按同样的比例作出这个力F′的图示,比较F′与用平行四边形定则求得的合力F,比较合力大小是否相等,方向是否相同;

  1、使用的弹簧秤是否良好(是否在零刻度),拉动时尽可能不与其它部分接触产生摩擦,拉力方向应与轴线、实验时应该保证在同一水平面内

  研究在弹性碰撞的过程中,相互作用的物体系统动量守恒。实验原理:一个质量较大的小球从斜槽滚下来,跟放在斜槽前边小支柱上另一质量较小的球发生碰撞后两小球都做平抛运动。由于两小球下落的高度相同,所以它们的飞行时间相等,这样如果用小球的飞行时间作时间单位,那么小球飞出的水平距离在数值上就等于它的水平速度。因此,只要分别测出两小球的质量m1、m2,和不放被碰小球时入射小球在空中飞出的水平距离s1,以及入射小球与被碰小球碰撞后在空中飞出的水平距离s1和s2,若m1s1在实验误差允许范围内与m1s1+m2s2相等,就验证了两小球碰撞前后总动量守恒。

  实验器材:碰撞实验器(斜槽、重锤线),两个半径相等而质量不等的小球;白纸;复写纸;天平和砝码;刻度尺,游标卡尺(选用),圆规。实验步骤:1、用天平测出两个小球的质量m1、m2。

  2、安装好实验装置,将斜槽固定在桌边,并使斜槽末端点的切线、在水平地上铺一张白纸,白纸上铺放复写纸。4、在白纸上记下重锤线所指的位置O,它表示入射球m1碰前的位置。

  5、先不放被碰小球,让入射球从斜槽上同一高度处由静止开始滚下,重复10次,用圆规作尽可能小的圆把所有的小球落点圈在里面,圆心就是入射球不碰时的落地点的平均位置P。

  6、把被碰球放在小支柱上,调节装置使两小球相碰时处于同一水平高度,确保入射球运动到轨道出口端时恰好与靶球接触而发生正碰。

  7、再让入射小球从同一高度处由静止开始滚下,使两球发生正碰,重复10次,仿步骤(5)求出入射小球的落点的平均位置M和被碰小球落点的平均位置N。

  8、过O、N作一直线r(可用游标卡尺测出一个小球的直径,也可用刻度尺测出紧靠在一起的两小球球心间的距离),O就是被碰小球碰撞时的球心竖直投影位置。

  (1)必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。要知道为什么?

  1、用实验方法描出平抛物体的运动轨迹。2、从实验轨迹求平抛物体的初速度。

  平抛物体的运动可以看作是两个分运动的合运动:一是水平方向的匀速直线运动,另一个是竖直方向的自由落体运动。令小球做平抛运动,利用描迹法描出小球的运动轨迹,即小球做平抛运动的曲线,建立坐标系,测出曲线上的某一点的坐标x和y,根据重力加速度g的数值,利用公式y= gt2求出小球的飞行时间t,再利用公式x=vt,求出小球的水平分速度,即为小球做平抛运动的初速度。(3)实验器材:斜槽,竖直固定在铁架台上的木板,白纸,图钉,小球,有孔的卡片,刻度尺,重锤线、安装调整斜槽:用图钉把白纸钉在竖直板上,在木板的左上角固定斜槽,可用平衡法调整斜槽,即将小球轻放在斜槽平直部分的末端处,能使小球在平直轨道上的任意位置静止,就表明水平已调好;

  4、描绘运动轨迹:在木板的平面上用手按住卡片,使卡片上有孔的一面保持水平,调整卡片的位置,使从槽上滚下的小球正好穿过卡片的孔,而不擦碰孔的边缘,然后用铅笔在卡片缺口上点个黑点,这就在白纸上记下了小球穿过孔时球心所对应的位置。保证小球每次从槽上开始滚下的位置都相同,用同样的方法,可找出小球平抛轨迹上的一系列位置。取下白纸用平滑的曲线把这些位置连接起来即得小球做平抛运动的轨迹;5、计算初速度:以O点为原点画出竖直向下的y轴和水平向右的x轴,并在曲线上选取A、B、C、D、E、F六个不同的点,用刻度尺和三角板测出它们的坐标x和y,用公式x=v0t和y= gt2计算出小球的初速度v0,最后计算出v0的平均值,并将有关数据记入表格内。

  实验原理: 当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒。若某一时刻物体下落的瞬时速度为v,下落高度为h,则应有: ,借助打点计时器,测出重物某时刻的下落高度h和该时刻的瞬时速度v,即可验证机械能是否守恒,实验装置如图所示。

  测定第n点的瞬时速度的方法是:测出第n点的相邻前、后两段相等时间T内下落的距离sn和sn+1,由公式vn= ,或由vn= 算出,如图所示。

  铁架台(带铁夹),打点计时器,学生电源,导线,带铁夹的重缍,纸带,米尺。

  实验步骤:1、按如图装置把打点计时器安装在铁架台上,用导线把打点计时器与学生电源连接好。2、把纸带的一端在重锤上用夹子固定好,另一端穿过计时器限位孔,用手竖直提起纸带使重锤停靠在打点计时器附近。

  3、接通电源,松开纸带,让重锤自由下落。4、重复几次,得到3~5条打好点的纸带。5、在打好点的纸带中挑选第一、二两点间的距离接近2mm,且点迹清晰一条纸带,在起始点标上0,以后各依次标上1,2,3……,用刻度尺测出对应下落高度h1、h2、h3……。

  6、应用公式vn= 计算各点对应的即时速度v1、v2、v3……。7、计算各点对应的势能减少量mghn和动能的增加量 ,进行比较。

  实验原理: 单摆在摆角小于5°时的振动是简谐运动,其固有周期为T=2π ,由此可得g= 。据此,只要能够测出摆长l和周期T,即可计算出当地的重力加速度值。

  1、在细线的一端打一个比小球上的孔径稍大些的结,将细线穿过球上的小孔,制成一个单摆;

  5、将测出的摆长l和周期T代入公式g= 求出重力加速度g的值;6、变更摆长重做两次,并求出三次所得的g的平均值。

  1、选择材料时应选择细、轻又不易伸长的线m左右,小球应选用密度较大的金属球,直径应较小,最好不超过2cm。2、单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑、摆长改变的现象。

  5、计算单摆的振动次数时,应以摆球通过最低位置时开始计时,以后摆球从同一方向通过最低位置时,进行计数,且在数“零”的同时按下秒表,开始计时计数。

  (2)、油膜面积的测量:油膜形状稳定后,将玻璃板放在浅盘上,将油膜的形状用彩笔画在玻璃板上;将玻璃板放在坐标纸上,以1cm边长的正方形为单位,用四舍五入的方法数出油膜面积的数值S(以cm2为单位)。

  实验目的:利用电场中电势差及等势面的知识,练习用描迹法画出电场中一个平面上的等势线。

  用导电纸上形成的稳恒电流场来模拟静电场,当两探针与导电纸上电势相等的两点接触时,与探针相连的灵敏电流计中通过的电流为零,指针不偏转,从而能够利用灵敏电流计找出导电纸上的等势点,并依据等势点描绘出等势线。

  1、在平整的木板上,由下而上依次铺放白纸、复写纸、导电纸各一张,导电纸有导电物质的一面要向上,用图钉把白纸、复写纸、和导电纸一起固定在木板上。

  2、在导电纸上平放两个跟它接触良好的圆柱形电极,两个电极之间的距离约为10cm,将两个电极分别与电压约为6V的直流电源的正负极相接,作为“正电荷”和“负电荷”,再把两根探针分别接到灵敏电流计的“+”、“-”接线柱上(如图所示)。

  4、接通电源,将一探针跟某一基准点接触,然后在这一基准点的一侧距此基准点约1cm处再选一点,在此点将另一探计跟导电纸接触,这时一般会看到灵敏电流计的指针发生偏转,左右移动探针位置,能够找到一点使电流计的指针不发生偏转,用探针把这一点位置复印在白纸上。5、按步骤(4)的方法,在这个基准点的两侧逐步由近及远地各探测出五个等势点,相邻两个等势点之间的距离约为1cm。6、用同样的方法,探测出另外四个基准点的等势点。

  2、寻找等势点时,应从基准点附近由近及远地逐渐推移,不可冒然进行大跨度的移动,以免电势差过大,发生电流计过载现象。

  根据电阻定律公式 ,只要测量出金属导线的长度l和它的直径d,计算出导线的横截面积S,并用伏安法测出金属导线的电阻R,即可计算出金属导线的电阻率。

  被测金属导线V),滑动变阻器(50Ω),电键,导线若干,螺旋测微器,米尺。

  1、用螺旋测微器在被测金属导线上的三个不同位置各测一次直径,求出其平均值d,计算出导线、按如图所示的原理电路图连接好用伏安法测电阻的实验电路。

  注意事项:1、测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两并入点间的部分待测导线长度,测量时应将导线、本实验中被测金属导线的电阻值较小,因此实验电路一定要采用电流表外接法。3、实验连线时,应先从电源的正极出发,依次将电源、电键、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待测金属导线、闭合电键S之前,一定要使滑动变阻器的滑动片处在有效电阻值最大的位置。

  螺旋测微器:固定刻度上的最小刻度为0.5mm(在中线的上侧);可动刻度每旋转一圈前进(或后退)0.5mm。在可动刻度的一周上平均刻有50条刻线,所以相邻两条刻线mm。读数时,从固定刻度上读取整、半毫米数,然后从可动刻度上读取剩余部分(因为是10分度,所以在最小刻度后应再估读一位),再把两部分读数相加,得测量值。如图中的读数应该是6.702mm。

  1、描绘小灯泡的伏安特性曲线、理解并检验灯丝电阻随温度上升而增大。3、掌握仪器的选择和电路连接。

  1、根据部分电路欧姆定律,一纯电阻R两端电压U与电流I总有U=I?R,若R为定值时,U—I图线为一过原点的直线。小灯泡的灯丝的电阻率随温度的升高而增大,其电阻也就随温度的升高而增大。而通过小灯泡灯丝的电流越大,灯丝的温度也越高,故小灯泡的伏安特性曲线A)电阻很小,当它与电流表(0.6A)串联时,电流表的分压影响很大,为了准确测出小灯泡的伏安特性曲线,即U、I的值,电流表应采用外接法,为使小灯泡上的电压能从0开始连续变化,滑动变阻器应采用分压式连接。

  3、实验电路如图所示,改变滑动变阻器的滑片的位置,从电压表和电流表中读出几组I、U值, 在坐标纸上以I为横坐标,U为纵坐标,用测出的几组I、U值画出U-I图象。

  小灯泡(3.8V,0.3A),电压表(0-3V-15V),电流表(0-0.6A-3A),滑动变阻器(20Ω),学生低压直流电源,电键,导线若干,坐标纸、铅笔。实验步骤:

  1、如图所示连结电路安培表外接,滑线变阻器接成分压式。电流表采用0.6A量程,电压表先用0~3V的量程,当电压超过3V时采用15V量程。2、把变阻器的滑动片移动到一端使小灯泡两端电压为零

  3、实验中在图线拐弯处要尽量多测几组数据(U/I值发生明显变化处,即曲线拐弯处。此时小灯泡开始发红,也可以先由测绘出的U—I图线,电压为多大时发生拐弯,然后再在这一范围加测几组数据)。4、在电压接近灯泡标称电压值时,一定要慢慢移动滑动触头。当电压指在标称电压处时,测出电流电压值后,要马上断开电键。

  2.实验原理:电流表G(表头),由欧姆定律满偏电压Ug=IgRg,如图所示。 电流表的满偏电流Ig满偏电压Ug一般都很小,测量较大电压时,要串联一个电阻, UAB=I(Rg+R),即UAB∝I,(至于电表刻度盘,只需要把原来的电流表刻度盘的每一刻度数值扩大为原来的(Rg+R)倍,即得到改装后电压表的表盘。)

  ①按图所示电路连接。②先将触头移动到最左端,然后闭合电键,移动触头位置,使改装后电压表的示数从零逐渐增大到量程值,每移动一次记下改装的电压表和标准电压表示数,并计算中心满刻度时的百分数误差=×100%。5.需要注意的几点:⑴半偏法测电流表电阻时,应选择阻值R远大于电流表内阻的变阻器。⑵闭合电键前应检查变阻器触头位置是不是正确。⑶校对改装后电压表时,应采用分压式电路,且变阻器阻值应较小。

  6.误差分析:利用半偏法测电阻Rg时,由于闭合电键S2后,电路的总阻减小,使干路电流大于电流表的满偏电流Ig,故当电流表半偏时,流过电阻箱的电流大于

  如图1所示,改变R的阻值,从电压表和电流表中读出几组I、U值,利用闭合电路的欧姆定律求出几组ε、r值,最后分别算出它们的平均值。此外,还可以用作图法来处理数据。即在坐标纸上以I为横坐标,U为纵坐标,用测出的几组I、U值画出U-I图象(如图2)所得直线跟纵轴的交点即为电动势值,图线斜率的绝对值即为内电阻r的值。实验器材:

  待测电池,电压表(0-3V),电流表(0-0.6A),滑动变阻器(10Ω),电键,导线V量程,按电路图连接好电路。

  3.闭合电键,调节变阻器,使电流表有明显示数,记录一组数据(I1、U1),用同样方法测量几组I、U的值。

  1、为了使电池的路端电压变化明显,电池的内阻宜大些,可选用已使用过一段时间的1号干电池。2、干电池在大电流放电时,电动势ε会显而易见地下降,内阻r会明显增大,故长时间放电不宜超过0.3A,短时间放电不宜超过0.5A。因此,实验中不要将I调得过大,读电表要快,每次读完立即断电。

  4、在画U-I图线时,要使较多的点落在这条直线上或使各点均匀分布在直线的两侧。个别偏离直线太远的点可舍去不予考虑。这样,就可使偶然误差得到部分的抵消,来提升精确度。

  传感器是将所感受到的物理量(力热声光)转换成便于测量的量(一般是电学量)的一类元件。

  通过对某一物理量敏感的元件,将感受到的物理量按一定规律转换成便于利用的信号,转换后的信号经过相应的仪器做处理,就能够达到自动控制等各种目的。热敏电阻,升温时阻值迅速减小.光敏电阻,光照时阻值减小, 导致电路中的电流、电压等变化来达到自动控制

  集成电路 将晶体管,电阻,电容器等电子元件及相应的元件制作在一块面积很小的半导体晶片上,使之成为具有一定功能的电路,这就是集成电路。

  如图所示,入射光线AO由空气射入玻璃砖,经OO1后由O1B方向射出。作出法线,

  滑动变阻器在电路中也有a、b两种常用的接法:a叫限流接法,b叫分压接法。分压接法:被测电阻上电压的调节范围大。

  只需用笔画线当作导线,从电源正极开始,把电源、电键、滑动变阻器、伏安法四部分依次串联起来即可(注意电表的正负接线柱和量程,滑动变阻器应调到阻值最大处)。

  应该先把电源、电键和滑动变阻器的全部电阻丝三部分用导线连接起来,然后在滑动变阻器电阻丝两端之中任选一个接头,比较该接头和滑动触头两点的电势高低,

  全部装置放在真空中。荧光屏可以沿着图中虚线转动,用来统计向不同方向散射的粒子的数目。观察结果是,绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但是有少数α粒子发生了较大的偏转。

  平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。